Resit Exam
Series B

28 February 2020

Please use separate sheets for different problems. Please answer all questions on a single sheet. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks and each question is worth 5 marks. To pass it necessary (but not sufficient) to score at least 50% out of 6 questions.

Problem 1.
Let $V=\operatorname{lin}((1,1,5,2,8),(1,2,4,4,8),(3,13,5,26,24))$ be a subspace of \mathbb{R}^{5}.
a) find a basis of the subspace V and the dimension of V,
b) find a system of linear equations which set of solutions is equal to V.

Problem 2.
Let $V \subset \mathbb{R}^{5}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+10 x_{3}+7 x_{4}+r x_{5}=0 \\
x_{1}+3 x_{2}+13 x_{3}+8 x_{4}+14 x_{5}=0
\end{array}\right.
$$

a) find a basis \mathcal{A} of the subspace V and the dimension of V,
b) extend the basis \mathcal{A} to a basis \mathcal{B} of \mathbb{R}^{5} and find coordinates of vector $w=$ $(1,-2,1,-1,0) \in \mathbb{R}^{5}$ relative to the basis \mathcal{B}.

Problem 3.

Let

$$
A=\left[\begin{array}{ll}
-4 & 3 \\
-6 & 5
\end{array}\right]
$$

a) find a matrix $C \in M(2 \times 2 ; \mathbb{R})$ such that

$$
C^{-1} A C=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

where $b<0$,
b) compute A^{45}.

Problem 4.

Let

$$
A=\left[\begin{array}{ccc}
2 & t & 1 \\
t & 2 & t \\
1 & 2 t & 2
\end{array}\right]
$$

a) for which $t \in \mathbb{R}$ is the matrix $\left(A^{\top}\right)^{4} A^{3}\left(A^{\top}\right)^{2}$ invertible?
b) find the entry in the second row and the third column of the matrix A^{-1} for $t=1$.

Problem 5.

Consider the following linear programming problem $-4 x_{2}-3 x_{3}-x_{4} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{aligned}
x_{2} & +x_{3} \\
-x_{1} & =1 \\
-x_{1} & +2 x_{3}+x_{4} \\
x_{1} & \\
& -2 x_{3}
\end{aligned} \quad \begin{array}{l}
\text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 4
\end{array}\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{2,3,4\}, \mathcal{B}_{2}=\{1,2,4\}, \mathcal{B}_{3}=\{1,2,3\}$ are basic? Which basic set is basic feasible? Write the corresponding feasible solution.
b) solve the linear programming problem using simplex method.

Questions

Question 1.

Is matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ negative definite for all $a, b, c, d<0$?

Question 2.

If $v=(1,0,1), w=(1,2,3) \in \mathbb{R}^{3}, V=\operatorname{lin}(v)$, is the image of vector $w \in \mathbb{R}^{3}$ under the (linear) orthogonal projection on the subspace $V^{\perp} \subset \mathbb{R}^{3}$ equal to

$$
P_{V^{\perp}}(w)=(-1,2,1) ?
$$

Question 3.

If $A \in M(2 \times 2 ; \mathbb{R})$ and $A-A^{\top}=\mathbf{0}$, does it follow that $A^{\top} A=A A^{\top}$?

Question 4.

Is it possible that $A, B \in M(2 \times 2 ; \mathbb{R})$, $\operatorname{det} B=0$ and $\operatorname{det}\left(2 A B+B^{2}\right) \neq 0$?
Question 5.
Is it possible that \mathcal{A}, \mathcal{B} are two different bases of \mathbb{R}^{2} and

$$
M(\mathrm{id})_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ?
$$

Question 6.
Are the affine subspaces $E, H \subset \mathbb{R}^{3}$ given by

$$
\begin{gathered}
E=(1,1,2)+\operatorname{aff}((-1,0,1),(1,1,2),(3,2,3)) \\
H=(1,-1,0)+\operatorname{lin}((2,1,1))
\end{gathered}
$$

parallel?

